- Liu R., T. Zhu, T. Yang, Z. Y. Yang, A. Ren, L. Shi, J. Zhu, H. S. Yu, M. W. Zhao*, NO regulates ganoderic acid biosynthesis by the S-nitrosylation of aconitase under HS in Ganoderma lucidum, Environmental Microbiology, 2020, 10.1111/1462-2920.15109 
- Hu Y. R., S. S. Hu, W. Z. Xu, J. Zhu, L. Shi, A. Ren, M. W. Zhao*, In Ganoderma lucidum, Glsnf1 regulates cellulose degradation by inhibiting GlCreA during the utilization of cellulose, Environmental Microbiology, 2020, 22(1): 107–121 
- Hu Y. R., W. Z. Xu, S. S. Hu, L. D. Lian, J. Zhu, A. Ren, L. Shi, M. W. Zhao*, Glsnf1-mediated metabolic rearrangement participates in coping with heat stress and influencing secondary metabolism in Ganoderma lucidum, Free Radical Biology and Medicine, 2020, 147: 220–230 
- Zhu J., Z. H. Sun, S. Q. Song, D. K. Shi, L. D. Lian, L. Shi, A. Ren, H. S. Yu, M. W. Zhao*, Dual function of AreA, a GATA transcription factor, in influencing ganoderic acid biosynthesis in Ganoderma lucidum, Environmental Microbiology, 2019, 21(11):4166-4179 
- Hu Y. R., S. S. Hu, W. Z. Xu, J. Zhu, L. Shi, A. Ren, M. W. Zhao*, In Ganoderma lucidum, Glsnf1 regulates cellulose degradation by inhibiting GlCreA during the utilization of cellulose, Environmental Microbiology, 2019, DOI: 10.1111/EMI.14826 
- Liu R.※, P. F. Cao※, A. Ren, S. L. Wang, T. Yang, T. Zhu, L. Shi, J. Zhu, A. L. Jiang, M. W. Zhao*, SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum, Redox Biology, 2018, 16: 388-400 
- Liu Y. N., X. X. Lu, A. Ren, L. Shi, J. Zhu, A. L. Jiang, H. S. Yu, M. W. Zhao*, Conversion of phosphatidylinositol (PI) to PI4-phosphate (PI4P) and then to PI (4,5) P2 is essential for the cytosolic calcium concentration under heat stress in Ganoderma lucidum, Environmental Microbiology, 2018, 20(7): 2456–2468 
- Gao T. ※, L. Shi※, T. J. Zhang, A. Ren, A. L. Jiang, H. S. Yu, M. W. Zhao*, Cross-talk between calcium and ROS regulates hyphal branching and ganoderic acids biosynthesis in Ganoderma lucidum under copper stress, Applied and Environmental Microbiology, 2018, 84(13) : e00438-18 
- Liu R.※, L. Shi※, T. Zhu, T. Yang, A. Ren, J. Zhu, M. W. Zhao*, Cross-talk between nitric oxide and calcium-calmodulin to regulate GA biosynthesis in Ganoderma lucidum under heat stress, Applied and Environmental Microbiology, 2018, 84(10) : e00043-18 
- Liu Y. N., X. X. Lu, C. Dai, Y. P. Lu, A. Ren, L. Shi, J. Zhu, A. L. Jiang, H. S. Yu, M. W. Zhao*, Phospholipase D and phosphatidic acid mediate heat stress induced secondary metabolism in Ganoderma lucidum, Environmental Microbiology, 2017, 19(11), 4657–4669, 
- Liu Y. N., T. J. Zhang, X. X. Lu, B. L. Ma, A. Ren, L. Shi, A. L. Jiang, H. S. Yu, M. W. Zhao*, Membrane fluidity is involved in the regulation of heat stress induced secondary metabolism in Ganoderma lucidum, Environmental Microbiology, 2017, 19(4): 1653–1668 , 
- Ren A.※, R. Liu※, Z. G. Miao※, X. Zhang, P. F. Cao, T. X. Chen, C. Y. Li, L. Shi, A. L. Jiang, M. W. Zhao*, Hydrogen-rich water regulates effects of ROS balance on morphology, growth and secondary metabolism via glutathione peroxidase in Ganoderma lucidum, Environmental Microbiology, 2017, 19(2): 566–583, 
- Wu C. G., J. L. Tian, R. Liu, P. F. Cao, T. J. Zhang, A. Ren, L. Shi, M. W. Zhao*, Ornithine decarboxylase mediated production of putrescine influences ganoderic acid biosynthesis via the regulation of ROS in Ganoderma lucidum, Applied and Environmental Microbiology, 2017, 83(20): e01289-17 
- Han Q.※, F. L. Wu※, X. N. Wang, H. Qi, L. Shi, A. Ren, Q. H. Liu, M. W. Zhao* and C. M. Tang*, The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signaling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity, Environmental Microbiology, 2015, 17(4), 1166–1188 
- Mu D. S., C. Y. Li, X. C. Zhang, X. B. Li, L. Shi, A. Ren, and M. W. Zhao*, Functions of the nicotinamide adenine dinucleotide phosphate oxidase family in Ganoderma lucidum: an essential role in ganoderic acid biosynthesis regulation, hyphal branching, fruiting body development, and oxidative-stress resistance, Environmental Microbiology, 2014, 16(6), 1709–1728,